Abstract

The stresses and strains in a diamond anvil cell device were investigated using a finite-element code NIKE2D for the case of an ultra-hard composite gasket material. The pressure distribution in a diamond-coated rhenium gasket was measured by the energy dispersive diffraction technique to 213 GPa and compared with the finite-element modeling results. We examine various models for the mechanical properties of diamond-coated rhenium gasket as well as for diamond failure for shear stresses exceeding 100 GPa. The elastic and plastic properties of gasket were varied such that a good agreement between the experimentally measured pressure distribution and the computational pressure profiles were obtained. As a result, we obtained the effective Young’s modulus, Poisson’s ratio, yield stress for indented gasket, linear hardening modulus, and hardening parameter value for this layered ultra-hard composite gasket material. Future diamond design strategies for attainment of extreme high pressures using ultra-hard gasket materials are also discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.