Abstract

A variety of efforts have been put into sensing and modeling of pavements. Such capability is commonly validated with experimental data and used as reference for damage detection and other structural changes. Finite element models (FEM) often provides a high fidelity physics-base benchmark to evaluate the pavement integrity. On the monitoring of roads and pavements in general, FEM combining with in-situ data largely extends the awareness of the pavement condition, and enhances the durability and sustainability for the transportation infrastructures. Although many studies were performed in order to simulate static stress and strain in the pavement, FEM also show potential for dynamic analysis, allowing to extract both frequency response and wave propagation at any location, including the behavior of the soil on the surroundings. Fiber optical sensing is adopted in this research, which outperforms the traditional sensing techniques, such as accelerometers or strain gauges, given its nature of providing continuous measurement in a relatively less intrinsic fashion. Moreover, the data is adopted to validate and calibrate the FEM with complex material properties, such as damping and viscoelasticity of the pavement as well as other nonlinear behavior of the surrounded soil. The results demonstrate a successful FEM with good accuracy of the waveform prediction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.