Abstract

With the development of new concrete technology, high-strength concrete has been used worldwide. In particular, more economic benefits can be achieved by applying high-strength concrete-filled steel tube (HSCFST) columns in the concrete core walls of super high-rise buildings. A constitutive relation with high applicability for high-strength materials with different strength grades is proposed. Based on this constitutive model, a brick element model of 181 sets of axially compressed square HSCFST members is established and experimentally verified. The effects of the concrete strength, diameter-to-thickness ratio, and steel yield strength on the axial compressive capacities of these members were investigated based on finite element calculation results. The results showed that with an increase in the concrete strength, the ultimate bearing capacities of CS-CC, HS-HC, HS-CC, and CS-HC stub column members increased by 60%, 24%, 44%, and 21% at most, respectively. Additionally, as the steel yield strength increased, the ultimate bearing capacities of CS-CC, HS-HC, HS-CC, and CS-HC stub column members increased by 8.8%, 5.1%, 8.5%, and 5.2%, respectively, Hence, material strength has the greatest impact on CS-CC and HS-CC. The confinement effect of the square steel tube on the concrete weakens as the strength grade of steel or concrete increases. Notably, the confinement effect of steel tube on the concrete is strongest in CS-CC and weakest in the CS-HC. In addition, the confinement coefficients of square HSCFST stub columns with different combinations of concrete and steel strengths were analyzed. Based on the superposition principle in the ultimate state, a practical axial compressive capacity calculation formula for three types of square HSCFSTs is established. Compared with existing major design code formulas, the proposed formula is more accurate and concise and has a clear physical meaning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.