Abstract

The indentation stress characteristics of thin film/substrate systems by the flat cylindrical indenters have been simulated by means of the finite element method (FEM). The emphasis was put on the stress distribution ahead of the indenters. The influences of the friction coefficient between the indenter and the thin film, the thickness and hardening modulus of the thin film have been considered. It is found that the stress distribution was not affected by the friction coefficient. But the influence of the thickness and hardening modulus of the thin film on the stress distribution was obvious. At small indentation depth, the plastic deformation occurs at the edge of the indenter only, and the zone will propagation both vertically and laterally with the indentation depth increasing. When the indentation depth reaches a certain value, the thin film at the interface will occur the deformation plastic zone for the case studied in this paper. At lager depths, the two plastic zones will connect, and then the plastic zone propagates along the lateral direction. Beside, it is also found that the maximum of the Mises stress and the shearing stress on the interface occur at 0.8r and r(r is the radius of the indenter), respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.