Abstract

A finite element model based on elastic-plastic theory was conducted to study the densification process of iron-based powder metallurgy during high velocity compaction (HVC). The densification process of HVC at different heights was simulated using MSC Marc 2020 software with the Shima-Oyane model, and compared with the experimental results. The numerical simulation results were consistent with the experimental results, proving the reliability of the finite element model. Through finite element analysis and theoretical calculation, the high-speed impact molding process of metal powder was analyzed, and the optimal empirical compaction equation for iron-based powder high-speed impact molding was obtained. At the same time, the influence of impact velocity and impact energy on the relative density distribution cloud map and numerical values of the compact was analyzed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.