Abstract

In cricket, balls are delivered at speeds ranging from 25 to 45 m/s. The force generated upon impact at such high speeds can be detrimental to batsmen's safety. There are several existing equipment that protect batsmen from injury and it is vital to evaluate their effectiveness for use in this sport. Finite Element Methods have come to be an exceptionally reliable tool in the design process of such protective gear as they provide deep insight into the impact phenomenon. With rigorous experimental testing, mathematical models for both the impacting projectile and the protective equipment can be developed and used to simulate the impact scenario under varied circumstances. This paper investigates the strength of a Polycarbonate-foam sandwich against impact by a cricket ball using Finite Element Analysis. The foam sandwiched is Ethylene-Vinyl Acetate, which possesses good impact absorbing characteristics and generally finds application in mouth-guards for sports and recreational activities. The Polycarbonate plate provides tear resistance. The cricket ball was modelled as a viscoelastic material, validated with experimental data available in literature. Additionally, the skin, connective adipose tissue and muscle layers of the human body are also modelled. Simulations with multiple velocities of impact, multiple angles of impact and multiple layer thicknesses of protective system were carried out. Impact force transmitted to the skin and the specific energy absorption of the foam sandwich was determined. The consecutive layers of the protective equipment and the human tissues were modelled together as square plates. The best combination of material thicknesses of the protective material was determined based on the least contact force transmitted to the human skin upon impact.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.