Abstract

PurposeWe have carried out three-dimensional finite element analysis (FEA) to determine the physical and mechanical response in several ocular injuries. We applied this FEA model to evaluate an airsoft gun impact on an eye and the deformation rate of eyes of various axial lengths at various velocities.MethodsThis study was carried out on a human eye model using an FEA program created by Nihon, ESI Group. The airsoft gun pellet was set to impact the eye at initial velocities of 45, 60 and 75 m/s with the addition of variation in axial length of 20 mm (hyperopia), 22 mm (emmetropia), 24 mm (myopia) and 26 mm (high myopia). Deformation of the eye was calculated as the decrease rate of the volume of the eyeball and the decrease rate of the axial length.ResultsIn all emmetropic cases, the cornea reached its strain threshold during the impact, and scleral strain showed a patchy strength distribution in the simulation. The deformation was most evident in the anterior segment, while deformation of the posterior segment was less. The decrease rate of the volume of the eyeball and decrease rate of the axial length were highest in the hyperopic eye, followed by the emmetropic eye and myopic eye, and the high myopic eye showed the lowest decrease rates among the four axial lengths in all impact velocity simulations.ConclusionThese results suggest that hyperopic eyes are most susceptible to deformation by an airsoft gun impact compared with other axial length eye models in this simulation. The considerable deformation by an airsoft gun impact shown in this study might indicate the necessity of ocular protection to avoid permanent eye injury. FEA using a human eyeball model might be a useful method to analyze and predict the mechanical features of ocular injury by an airsoft gun.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.