Abstract

There is considerable ambiguity regarding the limiting values of the strain energy release rate (SERR) components at the tips of a crack lying along the interface between two dissimilar isotropic media. In this paper this aspect is examined using finite element analysis and Modified Crack Closure Integral (MCCI) for a problem in which the material properties are chosen so as to cause a large size crack-tip contact zone. By careful choice of this problem, interpenetration of the crack faces in the crack-tip contact zones is observed for the first time in the finite element analysis. Earlier solutions primarily on remote mode 1 loading reported that SERR components do not converge as the virtual crack extension Δa → 0 and that these components show an oscillatory nature when Δa is less than the contact zone size r c. In the present work, multipoint constraints are imposed on crack face normal displacements in the contact zone and meaningful results are generated for both remote tension and shear loading cases. The apparent nonconvergence of the SERR components as Δa → 0 can be explained if these components are considered as functions of Δa, and Δa is considered as the actual crack growth step size.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.