Abstract

In this paper, we consider a nonstandard elliptic eigenvalue problem on a rectangular domain, consisting of two overlapping rectangles, where the interaction between the subdomains is expressed through an integral coupling condition on their intersection. For this problem we set up finite element (FE) approximations, without and with numerical quadrature. The involved error analysis is affected by the nonlocal coupling condition, which requires the introduction and error estimation of a suitably modified vector Lagrange interpolant on the overall FE mesh. As a consequence, the resulting error estimates are sub-optimal, as compared to the ones established, e.g., in Vanmaele and van Keer (RAIRO – Math. Mod. Num. Anal 29(3) (1995) 339–365) for classical eigenvalue problems with local boundary or transition conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.