Abstract

Through the cutting simulation of titanium alloy impeller blade, the effect of the actual milling processing path on the elastic part deflection to of complicated thin-walled workpiece with low rigidity and high precision is studied. Use the principle of impeller modeling to model the spline of the impeller, and the spline curve of the impeller generated in MABLEB is imported into UG for digital modeling. The spline curve is used to generate the neutral surface, and the suction surface and pressure surface are obtained by the method of non-equidistant offset. The model of the non-stretchable straight surface blade is imported into ABAQUS for static simulation. Using MATLAB to fit the experimental data in the reference literature that fits the milling process range, the side milling experience formula is fitted. Calculate the equivalent milling force corresponding to different axial cutting depths, import into ABAQUS and use Python for secondary development. By simulating the milling process through the life-and-death element method, the local elastic deformation law of the milled thin-walled parts when multi-layer milling the impeller blades is explored. The influence of different machining paths on the deformation of the tool is studied. Simulation results show that the part deflection of workpiece can be reduced by rationally planning the machining path.

Highlights

  • Through the cutting simulation of titanium alloy impeller blade, the effect of the actual milling processing path on the elastic part deflection to of complicated thin-walled workpiece with low rigidity and high precision is studied

  • Use the principle of impeller modeling to model the spline of the impeller

  • the spline curve of the impeller generated in MABLEB is imported into

Read more

Summary

Introduction

Through the cutting simulation of titanium alloy impeller blade, the effect of the actual milling processing path on the elastic part deflection to of complicated thin-walled workpiece with low rigidity and high precision is studied. 摘要:通过对钛合金叶轮叶片进行切削仿真,研究实际铣削加工路径对低刚度高精度复杂薄壁件的弹性让刀变形的影 响。利用叶轮建模原理,对叶轮的样条进行造型,将MATLEB中生成的叶轮的样条曲线导入UG中进行数字化建模。 利用样条曲线生成中性面,通过非等距离偏置的原理得到吸力面和压力面的造型,将建立的非可展直纹面叶片模型导 入ABAQUS中,对其进行静态仿真。利用MATLAB对参考文献中符合铣削加工范围的实验所得数据进行立铣刀侧铣加 工经验公式的拟合。计算出不同轴向切深对应的等效铣削力,导入ABAQUS中利用Python进行二次开发,通过生死单 元法模拟铣削过程,探究对叶轮叶片进行多层铣削时铣削薄壁件的局部弹性变形规律。研究不同加工路径对让刀变形 的影响,仿真结果证明通过合理规划加工路径可以减小工件让刀变形。 薄壁件在铣削加工的过程中,由于其刚度低,易发生加 工变形,导致被加工表面尺寸精度低,影响工件性能[1]。钛 合金硬度远远高于铝合金,常温下弹性模量约为铝合金的1.5 倍,刚度和强度都很大,所以其弹性变形和塑性变形都相对 于铝合金要小,密度仅为钢的60%,因此广泛适用于航空类 结构件的制造,是一种典型的难加工材料。大量的文献对薄 壁件的弹性让刀变形、装夹变形和残余应力变形进行研究。 罗宇[2]等人研究了一种铝合金大型薄壁桶件,通过对材料进 行热力耦合动态仿真,得到切削热和切削力的变化规律,通 过薄壁件的热处理得到初始残余应力,将初始残余应力、切 削力和装夹条件进行耦合,得到工件的残余应力分布和加工 变形情况。钱丽丽[3]等人研究了钛合金薄壁联动环,分析了 联动环的工艺路线,建立立铣刀的铣削力经验模型,通过耦 合热处理后的残余应力、铣削切断力和装夹,分别得出刀和 工件的变形图,并对ABAQUS进行二次开发做参数化建模。 赵肖[4]等人利用薄板弹塑性力学原理求解薄壁件“S”件不同 加工位置处的基于精确铣削力模型的弹性变形,并进行铣削 加工刀位轨迹优化,借助 Matlab 建立理论补偿模型,提高 了“S”件表面加工精度。S. Ratchev[5,6,7,8,9]等人建立多种集成方 法,用于多步仿真迭代、建模和预测低刚度零件挠度引起的 表面误差、分析柔性力模型引起的变形、多级加工误差预测 及补偿方法。王荣奇[10]等人探究了不同装夹方式和不同走 刀路径排列组合对薄板件的弹性变形影响,并分析了未铣削 区域的材料残留对整体刚度带来的影响,证明材料残留不仅 导致弹性变形的分布变化,还会使整体变形变小。袁俊凇[11] 等人再假定简单薄壁件模型铣削力恒定不变的基础上,以 移动载荷的方式将等效铣削力动态加载在不同的刀位点 上观察其弹性变形,不考虑刚度变化带来的影响。

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.