Abstract

BackgroundProximal humerus fractures which occur as a result of a fall on an outstretched arm are frequent among the elderly population. The necessity of stabilizing such fractures by surgical procedures is a controversial matter among surgeons. Validating a personalized FE analysis by ex-vivo experiments of humeri and mimicking such fractures by experiments is the first step along the path to determine the necessity of such surgeries. MethodsFour fresh frozen human humeri were loaded using a new simple experimental setting, so to fracture the humeri at the anatomical neck. Strains on humeri's surfaces predicted by the high order FE analyses (as in Dahan et al., 2016) were compared to the experimental observations to further enhance the validity of the FE analyses. A simplified yield criterion based on a linear elastic analysis and principal strains was used to predict the anatomical neck fracture as observed in the experiment. FindingsAn excellent correlation between experimental measured and FE predicted strains was obtained (slope of 0.99 and R2=0.98). All humeri were fractured at the anatomical neck. The predicted yield load was within 10%–20% accuracy. InterpretationHigh-order FE analyses reliably predict strains and yield loads in the humeri. Fractures induced by the experimental setting correspond to anatomical neck fractures noticed in practice and classified as AO C1.1–C1.3. Surgical neck fractures, which are most common in clinical practice, could not be realized in the proposed experiments, and a different experimental setting should be sought to obtain them ex-vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.