Abstract

The calculation of the local density of states (LDOS) in lossy materials has long been disputed due to the divergence of the homogeneous Green function with equal space arguments. For arbitrary-shaped lossy structures, such as those of interest in nanoplasmonics, this problem is particularly challenging. A nondivergent LDOS obtained in numerical methods such as the finite-difference time-domain (FDTD) technique, at first sight appears to be wrong. Here we show that FDTD is not only an ideal choice for obtaining the regularized LDOS, but it can address the local-field problem for any lossy inhomogeneous material. We exemplify the case of a finite-size photon emitter (e.g., a single quantum dot) embedded within and outside a lossy metal nanoparticle and show excellent agreement with analytical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.