Abstract

In this paper we study finite clusters in a high density Boolean model with balls of two distinct sizes. Alexander (1993) studied the geometric structures of finite clusters in a high density Boolean model with balls of fixed size and showed that the only possible structure admitted by such events is that all Poisson points comprising the cluster are packed tightly inside a small sphere. When the balls are of varying sizes, the event that the cluster consists of k 1 big balls and k 2 small balls (both k 1, k 2 ≥ 1) occurs only when the centres of all big balls are compressed in a small sphere and the centres of the small balls are distributed uniformly inside the region formed by the big balls in such a way that the small balls are totally contained inside the big balls. We also show that it is most likely that a finite cluster in a high density Boolean model with varying ball sizes is made up only of small balls.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.