Abstract

Kramers-Kronig (K-K) relations exist as a consequence of causality, placing nonlocal constraints on the relationship between dispersion and absorption. The finite-bandwidth method of applying these relations is examined where the K-K integrals are restricted to the spectrum of the experimental data. These finite-bandwidth K-K relations are known to work with resonant-type data and here are applied to dispersion data consistent with a power-law attenuation coefficient (exponent from 1 to 2). Bandwidth-restricted forms of the zero and once-subtracted K-K relations are used to determine the attenuation coefficient from phase velocity. Analytically, it is shown that these transforms produce the proper power-law form of the attenuation coefficient as a stand-alone term summed with artifacts that are dependent on the integration limits. Calculations are performed to demonstrate how these finite-bandwidth artifacts affect the K-K predictions under a variety of conditions. The predictions are studied in a local context as a function of subtraction frequency, bandwidth, and power-law exponent. The K-K predictions of the power-law exponent within various decades of the spectrum are also examined. In general, the agreement between finite-bandwidth K-K predictions and exact values grows as the power-law exponent approaches 1 and with increasing bandwidth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.