Abstract

Finite amplitude thermal convection is studied in a horizontal layer of infinite Prandtl number fluid with a variable gravity. For the present study, gravity is restricted to vary quadratically with respect to the vertical variable. A perturbation technique based on a small parameter, which is a measure of the ratio of the vertical to horizontal dimensions of the convective cells, is employed to determine the finite amplitude steady solutions. These solutions are represented in terms of convective modes whose amplitudes can be either small or of order unity. Stability of these solutions is investigated with respect to three dimensional disturbances. A variable gravity function introduces two non‐dimensional parameters. For certain range of values of these two parameters, double or triple cellular structure in the vertical direction can be realized. Hexagonal patterns are preferred for sufficiently small amplitude of convection, while square patterns can become dominant for larger values of the convective amplitude. Variable gravity can also affect significantly the wavelength of the cellular pattern and the onset condition of the convective motion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.