Abstract
The undamped, finite amplitude, periodic motion of a load supported symmetrically by arbitrary isotropic, elastic shear mountings is investigated. Conditions on the shear response function sufficient to guarantee periodic motions for finite shearing with arbitrary initial data are provided. Some general results applicable for all simple shearing oscillators in the class are derived and illustrated graphically. The mechanical response of the general nonlinear shearing oscillator is compared with the response of a certain linear oscillator of comparable design. As consequence, certain static and dynamic aspects of the motion of an arbitrary nonlinear oscillator supported by shear springs are compared with those of a simple, linear oscillator for which the response is well-known and readily determined for the same initial data. The effect of a finite static shear deformation on the frequency equation for superimposed, small amplitude vibrations of the load is examined. The general analysis is applied to a class of hyperelastic biological tissues; and the frequency relation for finite amplitude oscillations of a load supported by soft tissue is derived. The finite amplitude oscillatory shearing of a general isotropic elastic continuum is described; and three universal relations connecting the stress and the oscillatory shearing deformation for every isotropic elastic material are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.