Abstract

Despite recent experimental developments, the topological order of the fractional quantum Hall state at filling ν=5/2 remains an outstanding question. We study conductance and shot noise in a quantum point contact device in the charge-equilibrated regime and show that, among Pfaffian, particle-hole Praffian, and anti-Pfaffian (aPf) candidate states, the hole-conjugate aPf state is unique in that it can produce a conductance plateau at G=(7/3)e^{2}/h by two fundamentally distinct mechanisms. We demonstrate that these mechanisms can be distinguished by shot noise measurements on the plateaus. We also determine distinct features of the conductance of the aPf state in the coherent regime. Our results can be used to experimentally single out the aPf order.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.