Abstract

Image recognition using deep network models has achieved remarkable progress in recent years. However, fine-grained recognition remains a big challenge due to the lack of large-scale well labeled dataset to train the network. In this paper, we study a deep network based method for fine-grained image recognition by utilizing the click-through logs from search engines. We use both click times and probability values to filter out the noise in click-through logs. Furthermore, we propose a deep siamese network model to fine-tune the classifier, emphasizing the subtle difference between different classes and tolerating the variation within the same class. Our method is evaluated by training with the Bing clickture-dog dataset and testing with the well labeled dog breed dataset. The results demonstrate great improvement achieved by our method compared with naive training.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.