Abstract

Jasmonates (JAs) control many aspects of plant defense and development, for instance by inhibiting growth and eliciting secondary metabolism. The mechanisms by which JAs regulate these processes are currently under intensive investigation. Examination of transcriptional changes upon methyl jasmonate (MeJA) perception in a fast-growing Arabidopsis thaliana cell suspension culture revealed a quick and direct dual effect of JAs on the plant\\'s cellular processes. Simultaneously, JA-elicited Arabidopsis cells activated phenylpropanoid metabolism and repressed cell cycle progression. Early JA response genes were predominantly implicated in transcriptional regulation and JA biosynthesis. In two parallel screens, we identified both early responsive transcriptional activators (ORA47 and MYC2) and transcriptional repressors (STZ/ZAT10 and AZF2) that putatively regulate the expression of the JA biosynthesis gene LOX3. In this addendum, we provide additional data demonstrating that MYC2, STZ/ZAT10, and AZF2 might also control the expression of JAZ1/TIFY10a that encodes a key repressor in the JA signaling cascade.Addendum to: Pauwels L, Morreel K, De Witte E, Lammertyn F, Van Montagu M, Boerjan W, Inzé D, Goossens A. Mapping methyl jasmonate-mediated transcriptional reprogramming of metabolism and cell cycle progression in cultured Arabidopsis cells. Proc Natl Acad Sci USA 2008; 105:1380-5.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.