Abstract

Fine roots, <2 mm in diameter, are responsible for water and nutrient uptake and therefore have a central role in carbon, nutrient and water cycling at the plant and ecosystem level. The root length density (RLD), fine root biomass (FRB) and vertical fine root distribution (VRD) in the soil profile have been used as good descriptors of resource-use efficiency and carbon storage in the soil. Along altitudinal gradients, decreases in temperature and radiation inputs (depending on the frequency of fog events) may reduce decomposition rates and nutrient availability what might stimulate plants to invest in fine roots, increasing acquisition of resources. We evaluated the seasonal variation of fine root parameters in a Lowland and Montane forest at the Atlantic Rain Forest. We hypothesized that, due to lower decomposition rates at the Montane site, the FRB and RLD at soil surface will be higher in this altitude, which can maximize the efficiency of resource absorption. FRB and RLD were higher in the Montane forest in both seasons, especially at the 0-5 layer. At the 0-5 soil layer in both sites, RLD increased from dry to wet season independently of variations in FRB. Total FRB in the top 30 cm of the soil at the Lowland site was significantly lower (334 g.m-2 in the dry season and 219 g.m-2 in the wet season) than at the Montane forest (875 and 451 g.m-2 in the dry and wet season, respectively). In conclusion, despite the relevance of FRB to describe processes related to carbon dynamics, the variation of RLD between seasons, independently of variations in FRB, indicates that RLD is a better descriptor for studies characterizing the potential of water and nutrient uptake at the Atlantic Rain Forest. The differences in RLD between altitudes within the context of resource use should be considered in studies about plant establishment, seedling growth and population dynamics at the Atlantic Rain Forest. At the ecosystem level, RLD and it seasonal variations may improve our understanding of the Atlantic rain forest functioning in terms of the biogeochemical fluxes in a possible scenario of climate change and environmental changes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.