Abstract

Human subtelomere regions contain numerous gene-rich segments and are susceptible to germline rearrangements. The availability of diagnostic test kits to detect subtelomeric rearrangements has resulted in the diagnosis of numerous abnormalities with clinical implications including congenital heart abnormalities and mental retardation. Several of these have been described as clinically recognizable syndromes (e.g., deletion of 1p, 3p, 5q, 6p, 9q, and 22q). Given this, fine-mapping of subtelomeric breakpoints is of increasing importance to the assessment of genotype-phenotype correlations in these recognized syndromes as well as to the identification of additional syndromes. We developed a BAC and cosmid-based DNA array (TEL array) with high-resolution coverage of 10 Mb-sized subtelomeric regions, and used it to analyze 42 samples from unrelated patients with subtelomeric rearrangements whose breakpoints were previously either unmapped or mapped at a lower resolution than that achievable with the TEL array. Six apparently recurrent subtelomeric breakpoint loci were localized to genomic regions containing segmental duplication, copy number variation, and sequence gaps. Small (1 Mb or less) candidate gene regions for clinical phenotypes in separate patients were identified for 3p, 6q, 9q, and 10p deletions as well as for a 19q duplication. In addition to fine-mapping nearly all of the expected breakpoints, several previously unidentified rearrangements were detected.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.