Abstract

AmajorstableQTLforflagleafwidthwasnarroweddownto2.5Mbregioncontainingtwopredicatedputativecandidategenes,anditseffectsonyield-relatedtraitswascharacterized. Flag leaf width (FLW) is important to production in wheat. In a previous study, a major quantitative trait locus for FLW (QFlw-5B) was detected on chromosome 5B, within an interval of 6.5cM flanked by the markers of XwPt-9103 and Xbarc142, using a mapping population of recombinant inbred lines derived from a cross between Kenong9204 (KN9204) and Jing411 (J411) (denoted as KJ-RILs). The aim of this study was to fine map QFlw-5B and characterize its genetic effects on yield-related traits. Multiple near-isogenic lines (NILs) were developed using one residual heterozygous line for QFlw-5B. Five recombinants for QFlw-5B were identified, and its location was narrowed to a 2.5Mb region based on combined phenotypic and genotypic data analysis. This region contained 27 predicted genes, two of which were considered as the most likely candidate genes for QFlw-5B. The FLW of NIL-KN9204 was significantly higher than that of NIL-J411 across all the tested environments. Meanwhile, significant increases in plant height, grain width and 1000-grain weight were observed in NIL-KN9204 compared with that in NIL-J411. These results indicate that QFlw-5B has great potential for marker-assisted selection in wheat breeding programs designed to improve both plant architecture and yield. This study also provides a basis for the map-based cloning of QFlw-5B.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.