Abstract
Pod size is a key agronomic trait that influences peanut yield greatly. However, our understanding of the mechanisms underlying pod size is limited. In this study, we employed a segregating population derived from a cross between the small-pod line ND_S and the large-pod line ND_L to map quantitative trait loci (QTL) associated with pod size. Initial mapping performed using bulk segregant analysis revealed a candidate interval on chromosome A05 referred to as qPSW05. We refined this interval to a 256.9 kb genomic region using newly developed molecular markers. Through sequence and expression analyses, we identified the candidate gene AhXE45GC, which encodes an AN1 zinc finger protein. We discovered a 33-bp insertion in the intron of AhXE45GC in ND_S. Accessions that lack this insertion, such as ND_L, had significantly larger pods than those with the insertion, including ND_S. To facilitate marker-assisted selection for peanut pod size, we developed a molecular marker associated with this polymorphism. This marker could provide a valuable genetic resource for breeding high-yielding peanut varieties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.