Abstract


 Discrete, highly skewed distributions with excess numbers of zeros often result in biased estimates and misleading inferences if the zeros are not properly addressed. A clinical example of children with electrophysiologic disorders in which many of the children are treated without surgery is provided. The purpose of the current study was to identify the optimal modeling strategy for highly skewed, zeroinflated data often observed in the clinical setting by: (a) simulating skewed, zero-inflated count data; (b) fitting simulated data with Poisson, Negative Binomial, Zero-Inflated Poisson (ZIP) and Zero-inflated Negative Binomial (ZINB) models; and, (c) applying the aforementioned models to actual, highlyskewed, clinical data of children with an EP disorder. The ZIP model was observed to be the optimal model based on traditional fit statistics as well as estimates of bias, mean-squared error, and coverage. 

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.