Abstract
Almost a third of the cosmic baryons are "missing" at low redshifts, as they reside in the invisible warm-hot intergalactic medium (WHIM). The thermal Sunyaev-Zeldovich (tSZ) effect, which measures the line-of-sight integral of the plasma pressure, can potentially detect this WHIM, although its expected signal is hidden below the noise. Extragalactic dispersion measures (DMs)---obtained through observations of fast radio bursts (FRBs)---are excellent tracers of the WHIM, as they measure the column density of plasma, regardless of its temperature. Here we propose cross correlating DMs and tSZ maps as a new way to find and characterize the missing baryons in the WHIM. Our method relies on the precise ($\sim$ arcminute) angular localization of FRBs to assign each burst a DM and a $y$ parameter. We forecast that the signal from the WHIM should be confidently detected in a cross-correlation analysis of $\sim10^4$ FRBs, expected to be gathered in a year of operation of the upcoming CHIME and HIRAX radio arrays, confirming the recent tentative detections of filamentary WHIM. Using this technique, future CMB probes (which might lower the tSZ noise) could determine both the temperature of the WHIM and its evolution to within tens of percent. Altogether, DM-tSZ cross correlations hold great promise for studying the baryons in the local Universe.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.