Abstract

We review how phytoplankton abundance may be responding to the increase in stratification associated with anthropogenic climate change, providing context on the utility of remote sensing datasets and Earth system model output to understand these perturbations. Assessing disruption in the ocean biosphere using remote sensing datasets is challenged by the relatively short length of the observational record, restricting our ability to disentangle fluctuations due to internal climate variability from those imposed by externally forced anthropogenic trends. Ensembles of Earth system models can be used to quantify past and future drivers, but may not skillfully predict observed spatial patterns and temporal dynamics in marine phytoplankton. To better understand the role of internal climate variability in the observational record, we construct a synthetic ensemble of global chlorophyll concentration over the MODIS satellite mission using statistical emulation techniques. We emphasize the use of a synthetic ensemble to illuminate the role of internal climate variability in the evolution of the ocean biosphere over time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.