Abstract
Similarity plays a central role in the study of perception and cognition. Previous attempts to model similarity have captured effects of either featural or structural similarity, but typically not both. We simulated both by fitting similarity data with the LISA model of relational reasoning [Hummel, J. E., & Holyoak, K. J. (1997). Distributed representations of structure: A theory of analogical access and mapping. Psychological Review, 104, 427–466, Hummel, J. E., & Holyoak, K. J. (2003a). A symbolic-connectionist theory of relational inference and generalization. Psychological Review, 110, 220–264]. The same mechanisms LISA uses to simulate analogy also provide a natural account of feature-based similarity effects (e.g., violations of symmetry), structural effects (e.g., the advantage of alignable over non-alignable differences), and the combined effects of featural and structured information (i.e., MIPs and MOPs; “Matches In/Out of Place”) on similarity judgments. Our approach differs from most models of similarity in that LISA was not originally designed to simulate similarity judgments, but rather analogical reasoning. LISA’s incidental ability to simulate diverse similarity effects speaks to the plausibility of the model’s account of human knowledge representation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.