Abstract

We describe the techniques we have used to search for bugs in the memory subsystem of a next-generation Alpha microprocessor. Our approach is based on two model checking methods that use satisfiability (SAT) solvers rather than binary decision diagrams (BDDs). We show that the first method, bounded model checking, can reduce the verification runtime from days to minutes on real, deep, microprocessor bugs when compared to a state-of-the-art BDD-based model checker. We also present experimental results showing that the second method, a version of symbolic trajectory evaluation that uses SAT-solvers instead of BDDs, can find as deep bugs, with even shorter runtimes. The tradeoff is that we have to spend more time writing specifications. Finally, we present our experiences with the two SAT-solvers that we have used, and give guidelines for applying a combination of bounded model checking and symbolic trajectory evaluation to industrial strength verification.The bugs we have found are significantly more complex than those previously found with methods based on SAT-solvers.KeywordsModel CheckBinary Decision DiagramRegister Transfer LevelSymbolic Model CheckBound Model CheckThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.