Abstract

Purpose – Financial returns are often modeled as stationary time series with innovations having heteroscedastic conditional variances. This paper seeks to derive the kurtosis of stationary processes with GARCH errors. The problem of hypothesis testing for stationary ARMA(p, q) processes with GARCH errors is studied. Forecasting of ARMA(p, q) processes with GARCH errors is also discussed in some detail.Design/methodology/approach – Estimating‐function methodology was the principal method used for the research. The results were also illustrated using examples and simulation studies. Volatility modeling is the subject of the paper.Findings – The kurtosis of stationary processes with GARCH errors is derived in terms of the model parameters (ψ), Ψ‐weights, and the kurtosis of the innovation process. Hypothesis testing for stationary ARMA(p, q) processes with GARCH errors based on the estimating‐function approach is shown to be superior to the least‐squares approach. The fourth moment of the l‐steps‐ahead forec...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.