Abstract

Latent inhibition (LI) consists of a decrement in conditioning to a stimulus as a result of its prior nonreinforced preexposure. Based on evidence pointing to the involvement of the hippocampus and the nucleus accumbens (NAC) in LI disruption, it has been proposed that LI depends on the integrity of the subicular input to the NAC. Since fibers originating in the subiculum and destined for the NAC run through the fimbria-fornix, we assessed the effects of fimbria-fornix lesion, made using a knife cut, on LI. In addition, we assessed the effects of the fimbria-fornix cut in three tests known to be sensitive to lesions to the hippocampal region, namely, spontaneous activity, two-way active avoidance and delayed-non-matching-to-sample. In accord with previously documented effects of lesions to the hippocampus and related structures, the fimbria-fornix cut increased spontaneous activity (Experiment 1), facilitated the acquisition of two-way active avoidance (Experiment 3), and produced a delay-dependent deficit in the delayed-non-match-to-sample task (Experiment 4), demonstrating that it disrupted hippocampal functioning. In contrast, LI remained unaffected by the fimbria-fornix cut (Experiment 2), indicating that disruption of subicular input to the NAC is not responsible for the attenuation of LI following non-selective hippocampal lesions. The implications of these results for the neural circuitry of LI are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.