Abstract

A tame filtration of an algebra is defined by the growth of its terms, which has to be majorated by an exponential function. A particular case is the degree filtration used in the definition of the growth of finitely generated algebras. The notion of tame filtration is useful in the study of possible distortion of degrees of elements when one algebra is embedded as a subalgebra in another. A geometric analogue is the distortion of the (Riemannian) metric of a (Lie) subgroup when compared to the metric induced from the ambient (Lie) group. The distortion of a subalgebra in an algebra also reflects the degree of complexity of the membership problem for the elements of this algebra in this subalgebra. One of our goals here is to investigate, mostly in the case of associative or Lie algebras, if a tame filtration of an algebra can be induced from the degree filtration of a larger algebra.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.