Abstract

Automatically identifying and removing above-ground laser points from terrain surface is proved to be a challenging task for complicated and discontinuous scenarios. Eight methods have been developed and contrasted with each other for filtering LiDAR (Light Detection and Ranging) data. Only one approach is difficult to acquire high precisions for various landscapes. This paper presents a method filtering point clouds in which firstly a binary quadric trend surface is used to remove most non-terrain points by a defined height threshold and subsequently a progressive morphological filter further is employed to detect ground measurements. The experimental results demonstrate that this method yields less type I and total errors compared with other eight approaches based on ISPRS sample data sets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.