Abstract

Numerical approximation of a general class of one-dimensional highly oscillatory integrals over bounded intervals with exponential oscillators is considered. A Filon-type method based on modified Clenshaw–Curtis quadrature rules is developed and its stability is established when the stationary points of the oscillator function are all of order two. Also, an error estimate for the method is provided, which shows that the method is convergent as the number of Clenshaw–Curtis points increases, and the rate of convergence depends only on the Sobolev regularity of the integrand. Using some numerical experiments, the theoretical results are illustrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.