Abstract

Abstract Dealloying of a binary noble alloy produces a porous layer rich in the more noble element. Application of a tensile load initiates a brittle intergranular (IG) crack in the dealloyed layer that advances into the unattacked material. This study showed that the crack penetration depth (Cd) is proportional to the thickness of the dealloyed layer (t). For a given value of t, the grain-boundary crack penetration distance was shown to decrease as the dealloying potential increased. The dependence of Cd on t and the dealloying potential, as opposed to the applied potential at the time of fracture, supported the film-induced cleavage model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.