Abstract
Abstract. An overall appraisal of runoff changes at the European scale has been hindered by "white space" on maps of observed trends due to a paucity of readily-available streamflow data. This study tested whether this white space can be filled using estimates of trends derived from model simulations of European runoff. The simulations stem from an ensemble of eight global hydrological models that were forced with the same climate input for the period 1963–2000. The derived trends were validated for 293 grid cells across the European domain with observation-based trend estimates. The ensemble mean overall provided the best representation of trends in the observations. Maps of trends in annual runoff based on the ensemble mean demonstrated a pronounced continental dipole pattern of positive trends in western and northern Europe and negative trends in southern and parts of eastern Europe, which has not previously been demonstrated and discussed in comparable detail. Overall, positive trends in annual streamflow appear to reflect the marked wetting trends of the winter months, whereas negative annual trends result primarily from a widespread decrease in streamflow in spring and summer months, consistent with a decrease in summer low flow in large parts of Europe. High flow appears to have increased in rain-dominated hydrological regimes, whereas an inconsistent or decreasing signal was found in snow-dominated regimes. The different models agreed on the predominant continental-scale pattern of trends, but in some areas disagreed on the magnitude and even the direction of trends, particularly in transition zones between regions with increasing and decreasing runoff trends, in complex terrain with a high spatial variability, and in snow-dominated regimes. Model estimates appeared most reliable in reproducing observed trends in annual runoff, winter runoff, and 7-day high flow. Modelled trends in runoff during the summer months, spring (for snow influenced regions) and autumn, and trends in summer low flow were more variable – both among models and in the spatial patterns of agreement between models and the observations. The use of models to display changes in these hydrological characteristics should therefore be viewed with caution due to higher uncertainty.
Highlights
Europe’s climate is changing and with it the spatial and temporal characteristics of its hydrology
The distribution of trends in the observed high flow was found to be similar in shape to the annual runoff (Fig. 1, middle panel)
The spread among models was wider for high flow trends than for annual runoff trends
Summary
Europe’s climate is changing and with it the spatial and temporal characteristics of its hydrology. Precipitation has decreased around the Mediterranean and increased in parts of northern Europe Climate assessments and environmental reports for Europe often contain detailed, highresolution maps of observed changes in precipitation and temperature over recent decades, whereas the assessment of observed changes in streamflow, flood, and drought are largely based on a selection of regional and national case studies A consistent mapping of observed changes in hydrological variables on large regional and continental scales is required to enable a better understanding of global and regional changes in the hydrological cycle and related impacts on water availability and management. K. Stahl et al.: Filling the white space on maps of European runoff trends
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.