Abstract

To clarify the fabrication mechanism of molten polymer coating on microstructures such as optical display parts and bio-tip in Melt-Transcription-Molding (MTM) process, the transcription experiments between a metal stamper engraved with microstructures and a molten polymer (PC: polycarbonate and COC: cyclo-olefin copolymer) were carried out under various molding conditions (mold temperature, polymer temperature, polymer pressure and coating speed) and transcript results were evaluated from the dimensional aspect. In this study the complete transcription of the microstructures was obtained at mold temperature of 170°C for COC and 175°C for PC, respectively. However, the rim height of the microstructure was increased and its center depth was decreased, when lower mold temperatures were applied. From these experimental results, it was suggested that the adhesion force between a molten polymer filled with the microstructure and the metal mold surface plays an important role in fixing the transcript shape of the microstructure against the elastic recovery force and/or shrinkage by cooling. Furthermore, a model to explain the filling and transcription behavior of molten polymers was proposed from viscoelastic properties of each polymer, and it was confirmed that predicted microstructure geometries deduced with the model are well fitted with the transcript results which were experimentally obtained under various mold temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.