Abstract

While there exist many different image file formats, the JPEG committee concluded that none of those formats addressed a majority of the needs of tomorrow's complicated imaging applications. Many formats do not provide sufficient flexibility for the intelligent storage and maintenance of metadata. Others are very restrictive in terms of colorspace specification. Others provide flexibility, but with a very high cost because of complexity. The JPEG 2000 file format addresses these concerns by combining a simple binary container with flexible metadata architecture and a useful yet simple mechanism for encoding the colorspace of an image. This paper describes the binary format, metadata architecture, and colorspace encoding architecture of the JPEG 2000 file format. It also shows how this format can be used as the basis for more advanced applications, such as the upcoming motion JPEG 2000 standard.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.