Abstract

A model has been considered to describe the development of a surface discharge over a conductor electrically exploding in a strong magnetic field. A simulation performed using this model has shown that in the initial stage of the conductor explosion, a plasma layer of several tens of micrometers thick with an electron temperature of several electronvolts is formed on the metal surface. Based on the theory of small perturbations, the development of thermal filamentation instabilities that form in the surface plasma layer has been analyzed. The characteristic growth rates and wavelengths of these instabilities have been determined. The theoretical results were compared with the results of experiments performed on the ZEBRA generator (providing load currents of amplitude about 1 MA and rise time about 100 ns) and on the MIG generator (providing load currents of amplitude about 2 MA and rise time about 100 ns). For the conditions implemented with these generators, the filamentation model gives rise times of thermal filamentation instabilities of tens of nanoseconds at characteristic wavelengths of the order of 100 μm. These values are in good agreement with experimental data, which indicates the adequacy of both the surface discharge development model and the filamentation model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.