Abstract
Filament arrays were inscribed off-axis in the core of standard single-mode telecommunication fiber, using femtosecond laser pulses. The flexible line-by-line writing formed uniform, parallel filaments, permitting Bragg grating sensing of the photoelastic response from inside of the narrow grating plane. Active monitoring of the Bragg resonance wavelength while driving a lateral fiber tip displacement directly informed on the fiber mechanics when coupled with opto-mechanical modelling. Overlaying of parallel and orthogonal gratings further provided a strongly contrasting azimuthal sensitivity, which paves the way for multi-dimensional displacement sensing with improved precision.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.