Abstract

Anderson localization of light is an exotic mesoscopic phenomenon sustained in disordered systems through the self-interference of multiply scattered light. The localized modes are essentially eigenfunctions of the structural disorder, and define the resonances in the system. In this paper, we report on the computed figures-of-merit of Anderson cavities in two-dimensional membrane based structures, in which the disorder is written on a periodic-on-average template. We propose a disorder parameter that better reflects the randomization of the lattice points as compared to the conventionally used percentage disorder strength. Our results investigate the viability of such cavities in applications such as random lasing and cavity quantum electrodynamics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.