Abstract
Selective area atomic layer deposition (SA-ALD) offers the potential toreplace a lithography step and provide a significant advantage to mitigate pattern errors and relax design rules in semiconductor fabrication. One class of materials that shows promise to enable this selective deposition process are self-assembled monolayers (SAMs). In an effort to more completely understand the ability of these materials to function as barriers for ALD processes and their failure mechanism, a series of SAM derivatives were synthesized and their structure-property relationship explored. These materials incorporate different side group functionalities and were evaluated in the deposition of a sacrificial etch mask. Monolayers with weak supramolecular interactions between components (for example, van der Waals) were found to direct a selective deposition, though they exhibit significant defectivity at and below 100 nm feature sizes. The incorporation of stronger noncovalent supramolecular interacting groups in the monolayer design, such as hydrogen bonding units or pi-pi interactions, did not produce an added benefit over the weaker interacting components. Incorporation of reactive moieties in the monolayer component that enabled the polymerization of an SAM surface, however, provided a more effective barrier, greatly reducing the number and types of defects observed in the selectively deposited ALD film. These reactive monolayers enabled the selective deposition of a film with critical dimensions as low as 15 nm. It was also found that the selectively deposited film functioned as an effective barrier for isotropic etch chemistries, allowing the selective removal of a metal without affecting the surrounding surface. This work enables selective area ALD as a technology through (1) the development of a material that dramatically reduces defectivity and (2) the demonstrated use of the selectively deposited film as an etch mask and its subsequent removal under mild conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.