Abstract

Experimental and theoretical investigations of indium-115 electric-field-gradient (EFG) tensors of indium(III) oxide, In2O3, have been presented. Field-stepwise-swept QCPMG solid-state 115In NMR experiments are carried out at T ​= ​120 ​K, observed at 52.695 ​MHz, and in the range of external magnetic fields between 4.0 and 6.5 ​T. The spectral simulations yield the quadrupolar coupling constant, CQ value, of 183(2) MHz and the asymmetry parameter, ηQ, of 0.05(5), for In(1), and that of 126(2) MHz and ηQ of 0.86(5) for In(2). Quantum chemical calculations are carried out to provide 115In EFG tensor orientations with respect to the molecular structure. A relationship between operative frequencies and variable ranges of external magnetic fields is briefly discussed for field-swept solid-state 115In NMR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.