Abstract
We study single and coupled first-order differential equations (ODEs) that admit symmetries with tangent vector fields, which satisfy the N-dimensional Cauchy–Riemann equations. In the two-dimensional case, classes of first-order ODEs which are invariant under Möbius transformations are explored. In the N dimensional case we outline a symmetry analysis method for constructing exact solutions for conformal autonomous systems. A very important aspect of this work is that we propose to extend the traditional technical usage of Lie groups to one that could provide testable predictions and guidelines for model-building and model-validation. The Lie symmetries in this paper are constrained and classified by field theoretical considerations and their phenomenological implications. Our results indicate that conformal transformations are appropriate for elucidating a variety of linear and nonlinear systems which could be used for, or inspire, future applications. The presentation is pragmatic and it is addressed to a wide audience.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Communications in Nonlinear Science and Numerical Simulation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.