Abstract
In response to the escalating complexity and frequency of wildland fires, this study investigates the feasibility of using wearable devices for real-time monitoring of cardiac, respiratory, physical, and environmental parameters during live wildfire suppression tasks. Data were collected from twelve male firefighters (FFs) from the Italian National Fire Corp during a simulated protocol, including rest, running, and active fire suppression phases. Physiological and physical metrics such as heart rate (HR), heart rate variability (HRV), respiratory frequency (fR) and physical activity levels were extracted using chest straps. The protocol designed to mimic real-world firefighting scenarios revealed significant cardiovascular and respiratory strain, with HR often exceeding 85% of age-predicted maxima and sustained elevations in high-stress roles. Recovery phases highlighted variability in physiological responses, with reduced HRV indicating heightened autonomic stress. Additionally, physical activity analysis showed task-dependent intensity variations, with debris management roles exhibiting consistently high exertion levels. These findings demonstrate the relevance of wearable technology for real-time monitoring, providing an accurate analysis of key metrics to offer a comprehensive overview of work-rest cycles, informing role-specific training and operational strategies.
Published Version
Join us for a 30 min session where you can share your feedback and ask us any queries you have