Abstract

The co-occurrence of per- and polyfluoroalkyl substances (PFASs) and chlorinated aliphatic hydrocarbons (CAHs) in groundwater has drawn increased attention in recent years. No studies have been conducted concerning the oxidative degradation of PFASs and/or CAHs by in situ thermally activated persulfate (TAP) in groundwater, primarily due to the difficulty in cost-effectively achieving the desired temperature in the field. In this study, the effects and mechanisms of PFASs degradation by in situ TAP at a site with PFASs and CAHs co-contaminants were investigated. The target temperature of 40.0–70.0 °C was achieved in groundwater, and persulfate was effectively distributed in the demonstration area – the combination of which ensured the degradation of PFASs and CAHs co-contaminants by in situ TAP. It was demonstrated that the reductions of perfluoroalkyl carboxylic acids (PFCAs) concentration in all monitoring wells were in the range of 43.7 %–66.0 % by in situ TAP compared to those maximum rebound values in groundwater, whereas no effective perfluoroalkane sulfonic acids (PFSAs) degradation was observed. The conversion of perfluoroalkyl acids (PFAAs) precursors was one of the main factors leading to the increase in PFCAs concentrations in groundwater during in situ TAP. CAHs were effectively degraded in most monitoring wells, and furthermore, no inhibitory effects of CAHs and Cl− on the degradation of PFASs were observed due to the presence of sufficient persulfate. Additionally, there were significant increases in SO42− concentrations and reductions of pH values in groundwater due to in situ TAP, warranting their long-term monitoring in groundwater. The integrated field and laboratory investigations demonstrated that the reductions in PFCAs and CAHs concentrations can be achieved by the oxidative degradation of in situ TAP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.