Abstract

Sweet sorghum is a high-yield crop with strong resistance, which has the potential to support the development of the forage farming industry in China where vast salt-affected lands are potentially arable. Nutrient management is imperative for sweet sorghum growing on salt-affected lands. Although nitrogen (N) synthetic fertilizers have long been recognized as a key factor for increasing crop yields, their effects on sweet sorghum cultivation are under debate. Consequently, this study integrated the current available observations of yield (n = 255) and partial factor productivity of nitrogen (NPFP, n = 242) of sweet sorghum in salt-affected lands, which included both inland (n = 189) and coastal (n = 66) areas. We quantitatively analyzed the effects of climatic, soil properties and management measures on biomass yield and NPFP of sweet sorghum, comparing the differences between inland and coastal salt-affected lands. We found that average biomass yield and NPFP of sweet sorghum in coastal areas were 19,082.48 ± 8262.75 kg/ha and 107.29 ± 51.44 kg/kg respectively, both significantly lower than that in inland areas (p < 0.05). The N application rate did not have significant promoting effect on the biomass yield of sweet sorghum in inland salt-affected areas (p > 0.05), whereas in coastal salt-affected areas, N application significantly increased the biomass yield of sweet sorghum. Increasing soil organic matter content could promote NPFP in inland areas. The recommended N application rate for inland salt-affected and coastal salt-affected areas were 100 kg/ha and 150 kg/ha respectively. The results indicate that it is crucial to apply nutrient management measures based on the local climatic and soil conditions, since the causes of salinity differ in coastal and inland salt-affected lands. More systematic field studies are required in the future to optimize the management of water and nutrients for sweet sorghum planting in salt-affected lands.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.