Abstract
A novel approach for the state-specific enantiomeric enrichment and the spatial separation of enantiomers is presented. Our scheme utilizes techniques from strong-field laser physics-specifically an optical centrifuge in conjunction with a static electric field-to create a chiral field with defined handedness. Molecular enantiomers experience unique rotational excitation dynamics, and this can be exploited to spatially separate the enantiomers using electrostatic deflection. Notably, the rotational-state-specific enantiomeric enhancement and its handedness are fully controllable. To explain these effects, the conceptual framework of field-induced diastereomers of a chiral molecule is introduced and computationally demonstrated through robust quantum-mechanical simulations on the prototypical chiral molecule propylene oxide (C_{3}H_{6}O), for which ensembles with an enantiomeric excess of up to 30% were obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.