Abstract
( Ba 0.65 Sr 0.35 ) 1 − x La x TiO 3 (BSLT) thin films with different La concentrations have been deposited on Si field emitter arrays (FEAs) using sol-gel technology for field electron emission applications. The films exhibit the perovskite structure at low La substitution level (x≤0.5) and the pyrochlore phase at high La concentration (x≥0.75). The 30-nm-thick BSLT (x=0.25) thin film has higher crystallinity of perovskite structure in the surface region. An x-ray photoelectron spectroscopy study indicates that the oxygen vacancy concentration decreases with La substitution. With respect to the undoped Ba0.65Sr0.35TiO3 thin film, the Fermi level shifts down for the BSLT sample with x=0.1 ascribed to the decreasing oxygen vacancy concentration, and then shifts up for the BSLT sample with x=0.25 attributed to the increasing La substitution level. In highly doped films with an x value over 0.5, it shifts down again associated with the second pyrochlore phase formation. The best enhancement in field emission is found for the BSLT-coated (x=0.25) Si FEAs due to the improved perovskite structure in the surface region and up-moved Fermi level of the coating.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.