Abstract

Inference on the largest mean of a multivariate normal distribution is a surprisingly difficult and unexplored topic. Difficulties arise when two or more of the means are simultaneously the largest mean. Our proposed solution is based on an extension of R.A. Fisher’s fiducial inference methods termed generalized fiducial inference. We use a model selection technique along with the generalized fiducial distribution to allow for equal largest means and alleviate the overestimation that commonly occurs. Our proposed confidence intervals for the largest mean have asymptotically correct frequentist coverage and simulation results suggest that they possess promising small sample empirical properties. In addition to the theoretical calculations and simulations we also applied this approach to the air quality index of the four largest cities in the northeastern United States (Baltimore, Boston, New York, and Philadelphia).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.