Abstract

Fibroblast growth factor-5 (FGF-5) is a putative target-derived survival factor for motoneurones as it is concentrated in the synaptic portions of skeletal muscles and because it promotes the survival of embryonic motoneurones in vitro. A variety of experimental approaches have been used to examine this possibility. The expression of FGF-5 in the neuromuscular system was analysed using the reverse transcription-polymerase chain reaction (RT-PCR). Both splice variants of FGF-5 were detected in adult rat skeletal muscle, sciatic nerve, and spinal cord. The expression of FGF-5 in skeletal muscle was up-regulated after denervation. At first sight this appears to be consistent with FGF-5 being a target-derived factor. However, FGF-5 protein was detected in Schwann cells, macrophages, vascular smooth muscle and endothelial cells, but not in muscle fibres. The absence of FGF-5 in muscle fibres was confirmed by RT-PCR examination of isolated muscle fibres. Furthermore, FGF-5 protein was also not detected in denervated fibres, as would be expected for a neuronal survival factor. Denervation did however lead to up-regulation of FGF-5 in the Schwann cells of the distal nerve trunk. This may indicate that FGF-5 is either an autocrine regulator of Schwann cells or a Schwann cell-derived neurotrophic factor. The latter appears not to be the case for two reasons. First, the double-ligation technique was used to show that endogenous FGF-5 is not transported in motor axons. Second, stereological estimates of the number of motoneurones in an FGF-5 null mutant (Angora) mouse failed to reveal any loss of motoneurones. Collectively these experiments suggest that FGF-5 is not a physiological regulator of motoneurones, and therefore raise the possibility that it is an autocrine regulator of Schwann cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.